Jumat, 29 Juli 2016

Proses Pembuatan PVC

Proses Pembuatan PVC (Poly Vinyl Chloride)

Apa itu PVC ? untuk apa kita mengetahuinya. Jadi PVC itu kependekan dari polyvinyl chloride dengan nama IUPAC : Poli(kloroetanadiol) adalah polimer termoplastik urutan ke tiga dalam hal jumlah pemakaian di dunia, setelah polietilenadan polipropilena. Diseluruh dunia lebih dari 50% PVC yang di produksi dipakai dalam konstruksi. sebagai bahan bangunan. PVC relatif murah, tahan lama dan mudah dibentuk. PVC bisa dibuat lebih elastis dan fleksibel dengan menambahkan plasticizer, umumnya ftalat. PVC yang fleksibel umumnya dipakai sebagai bahan pakaian, pipa, atap, dan insulasi kabel listrik. PVC diproduksi dengan cara polimerisasi monomer vinil klorida (CH2=CHCl). Karena 57% massanya adalah klor, PVC adalah polimer yang menggunakan bahan baku minyak bumi terendah di antara polimer lainnya.
  
Tahapan Pembuatan PVC
Secara garis besar proses produksi PVC dilakukan melalui tiga tahapan reaksi. PVC yang dihasilkan dalam tahapan-tahapan produksi ini merupakan PVC murni. Tahap-tahap pembuatan PVC, antara lain:

A. Klor-Alkali 
Proses yang pertama yaitu Proses Klor-Alkali, gas klorin (Cl2) merupakan produk utama yang dihasilkan pada tahapan ini, disamping produk-produk sampingan berupa natrium hidroksida (NaOH), gas hydrogen (H2) dan natrium hipoklorit (NaOCl).

Dalam Proses Klor-Alkali ini garam natrium klorida (NaCl) dilarutkan dalam air dan dimurnikan serta dikonsentrasikan. Larutan garam yang murni dan terkonsentrasi ini kemudian dielektrolisa melalui teknologi klor-alkali mutakhir yang dkembangkan oleh Asahi Glass Company (AGC), yaitu teknologi membran penukar kation (cation exchange membrane) menghasilkan caustic soda, gas klorin dan gas hydrogen. Natrium hipoklorit merupakan produk turunan yang didapat dengan mereaksikan caustic soda dan gas klorin. ASC memanfaatkan teknologi Klor-Alkali yang paling ramah lingkungan karena mengkonsumsi energi secara minimum, bebas polusi dan menghasilkan kualitas produk yang superior.
 
Dalam proses yang pertama, caustic soda (NaOH) merupakan produk utama yang dihasilkan, disamping produk-produk sampingan berupa gas klorin (Cl2), gas hydrogen (H2) dan natrium hipoklorit (NaOCl).

2NaCl + 2H2O → Cl2 + H2 + 2NaOH

Natrium hipoklorit dan asam klorida merupakan produk turunan yang didapat dengan mereaksikan natrium hidroksida dan gas klorin.

NaOH + Cl2 → NaOCl + HCl

B. EDC/VCM

Proses yang kedua, yaitu Proses EDC/VCM yang menghasilkan monomer vinil klorida (vinyl chloride monomer atau disingkat dengan VCM) sebagai produk utama. Proses produksi VCM dilakukan dengan dua langkah secara bersamaan, yaitu Direct Chlorination (DC) dan proses Oxy-Chlorination (OC).

Dalam Proses Direct Chlorination, gas klorin yang dihasilkan dari Proses Klor-Alkali direaksikan dengan ethylene untuk menghasilkan ethylene dichloride (EDC) dimana penggunaan utamanya adalah sebagai bahan baku pembuatan VCM. Reaksinya adalah:

CH2=CH2 + Cl2 → ClCH2CH2Cl

Dalam Proses Oxy-Chlorination, ethylene direaksikan dengan asam klorida (HCl) dan oksigen (O2) menghasilkan ethylene dichloride (EDC). Reaksi pada proses ini adalah:

CH2=CH2 + 2 HCl + ½ O2 → ClCH2CH2Cl + H2O

Ethylene dichloride yang dihasilkan melalui kedua langkah diatas kemudian dilakukan proses cracking menjadi vinil klorida (VCM) sebagai produk utama dan asam klorida (HCl) sebagai produk sampingan. Sebagian dari asam klorida yang dihasilkan dari proses cracking EDC kemudian digunakan kembali dalam Proses Oxy-Chlorination untuk menghasilkan EDC.

C. Polimerasasi

Dalam proses yang ketiga, yaitu Proses PVC, vinil klorida (VCM) dipolimerisasi menjadi resin polivinil klorida (PVC) dalam reactor batch. Setelah proses polimerisasi, sisa VCM yang tidak bereaksi dalam proses polimerisasi kemudian dipisahkan dari resin PVC melalui proses stripping. Resin PVC kemudian dikeringkan hingga didapat resin PVC berkualitas tinggi dengan tingkat kemurnian tinggi yang memenuhi standard kesehatan dan higienis internasional disamping memenuhi standard teknis untuk tuntutan aplikasi yang tinggi. Reaksi polimerisasi PVC adalah sebagai berikut:
 
           
Mekanisme polimerisasi yang dilakukan adalah dengan metode radikal bebas yang terdiri dari tiga tahap:
1. Inisiasi
2. Propagasi
3. Terminasi


Beberapa Contoh produk dari bahan PVC
Kamera Holder

Tempat Sepeda

Rak Sepatu

Lampu Belajar

Vas Bunga

 

 Semoga bermanfaat bagi kita semua, terima kasih.

Daftar Pustaka :
http://inuro.blogspot.co.id/2012/05/tahap-tahap-pembuatan-pvc.html
http://www.kerajinan.id/1526/11-ide-kreasi-unik-dari-pipa-pvc-yang-patut-anda-coba.html
https://www.scribd.com/doc/50184464/PVC-Polivinil-Klorida-Makalah-Kelompok-5-Pengetahuan-Bahan
http://ririnhapsari.blogspot.co.id/2009/12/apa-itu-pvc.html
http://www.asc.co.id/?idm=2&id=0&ids=0&idcat=0&lang=1&chl=1

Kamis, 28 Juli 2016

Proses Batu Bara

Batu Bara
   1. Pengertian


Batubara adalah salah satu bahan bakar fosil. Pengertian umumnya adalah batuan sedimen yang dapat terbakar, terbentuk dari endapan organik, utamanya adalah sisa-sisa tumbuhan dan terbentuk melalui proses pembatubaraan. Unsur-unsur utamanya terdiri dari karbon, hidrogen dan oksigen. Batubara juga adalah batuan organik yang memiliki sifat-sifat fisika dan kimia yang kompleks yang dapat ditemui dalam berbagai bentuk. Analisa unsur memberikan rumus formula empiris seperti : C137H97O9NS untuk bituminus dan C240H90O4NS untuk antrasit.
Pembentukan batubara dimulai sejak Carboniferous Period (Periode Pembentukan Karbon atau Batu Bara) dikenal sebagai zaman batu bara pertama yang berlangsung antara 360 juta sampai 290 juta tahun yang lalu. Mutu dari setiap endapan batu bara ditentukan oleh suhu dan tekanan serta lama waktu pembentukan, yang disebut sebagai ‘maturitas organik’. Proses awalnya gambut berubah menjadi lignite (batu bara muda) atau ‘brown coal (batu bara coklat)’ – Ini adalah batu bara dengan jenis maturitas organik rendah. Dibandingkan dengan batu bara jenis lainnya, batu bara muda agak lembut dan warnanya bervariasi dari hitam pekat sampai kecoklat-coklatan.
Mendapat pengaruh suhu dan tekanan yang terus menerus selama jutaan tahun, batu bara muda mengalami perubahan yang secara bertahap menambah maturitas organiknya dan mengubah batu bara muda menjadi batu bara ‘sub-bitumen’. Perubahan kimiawi dan fisika terus berlangsung hingga batu bara menjadi lebih keras dan warnanya lebh hitam dan membentuk ‘bitumen’ atau ‘antrasit’. Dalam kondisi yang tepat, penigkatan maturitas organik yang semakin tinggi terus berlangsung hingga membentuk antrasit.
2. Materi pembentuk batu bara
Hampir seluruh pembentuk batu bara berasal dari tumbuhan. Jenis-jenis tumbuhan pembentuk batu bara dan umurnya menurut Diessel (1981) adalah sebagai berikut:
*Alga, dari Zaman Pre-kambrium hingga Ordovisium dan bersel tunggal. Sangat sedikit endapan batu bara dari periode ini. 
*Silofita, dari Zaman Silur hingga Devon Tengah, merupakan turunan dari alga. Sedikit endapan batu bara dari periode ini. 
*Pteridofita, umur Devon Atas hingga Karbon Atas. Materi utama pembentuk batu bara berumur Karbon di Eropa dan Amerika Utara. Tetumbuhan tanpa bunga dan biji, berkembang biak dengan spora dan tumbuh di iklim hangat. 
*Gimnospermae, kurun waktu mulai dari Zaman Permian hingga Kapur Tengah. Tumbuhan heteroseksual, biji terbungkus dalam buah, semisal pinus, mengandung kadar getah (resin) tinggi. Jenis Pteridospermae seperti gangamopteris dan glossopteris adalah penyusun utama batu bara Permian seperti di Australia, India dan Afrika. 
*Angiospermae, dari Zaman Kapur Atas hingga kini. Jenis tumbuhan modern, buah yang menutupi biji, jantan dan betina dalam satu bunga, kurang bergetah dibanding gimnospermae sehingga, secara umum, kurang dapat terawetkan.
3. Proses Pembentukan Batu Bara
proses pembentukan batubara sendiri sangatlah kompleks dan membutuhkan waktu hingga berjuta-juta tahun lamanya. Batubara terbentuk dari sisa-sisa tumbuhan purba yang kemudian mengendap selama berjuta-juta tahun dan mengalami proses pembatubaraan (coalification) dibawah pengaruh fisika, kimia, maupun geologi. Oleh karena itu, batubara termasuk dalam kategori bahan bakar fosil. Secara ringkas ada 2 tahap proses pembatubaraan yang terjadi, yakni:

1. Tahap Diagenetik atau Biokimia, dimulai pada saat material tanaman terdeposisi hingga lignit terbentuk. Agen utama yang berperan dalam proses perubahan ini adalah kadar air, tingkat oksidasi dan gangguan biologis yang dapat menyebabkan proses pembusukan (dekomposisi) dan kompaksi material organik serta membentuk gambut.

2. Tahap Malihan atau Geokimia, meliputi proses perubahan dari lignit menjadi bituminus dan akhirnya antrasit.
a. Pembusukan, yakni proses dimana tumbuhan mengalami tahap pembusukan (decay) akibat adanya aktifitas dari bakteri anaerob. Bakteri ini bekerja dalam suasana tanpa oksigen dan menghancurkan bagian yang lunak dari tumbuhan seperti selulosa, protoplasma, dan pati.

b. Pengendapan, yakni proses dimana material halus hasil pembusukan terakumulasi dan mengendap membentuk lapisan gambut. Proses ini biasanya terjadi pada lingkungan berair, misalnya rawa-rawa.

c. Dekomposisi, yaitu proses dimana lapisan gambut tersebut di atas akan mengalami perubahan berdasarkan proses biokimia yang berakibat keluarnya air (H20) clan sebagian akan menghilang dalam bentuk karbondioksida (C02), karbonmonoksida (CO), clan metana (CH4).

d. Geotektonik, dimana lapisan gambut yang ada akan terkompaksi oleh gaya tektonik dan kemudian pada fase selanjutnya akan mengalami perlipatan dan patahan. Selain itu gaya tektonik aktif dapat menimbulkan adanya intrusi/terobosan magma, yang akan mengubah batubara low grade menjadi high grade. Dengan adanya tektonik setting tertentu, maka zona batubara yang terbentuk dapat berubah dari lingkungan berair ke lingkungan darat.

e. Erosi, dimana lapisan batubara yang telah mengalami gaya tektonik berupa pengangkatan kemudian di erosi sehingga permukaan batubara yang ada menjadi terkupas pada permukaannnya. Perlapisan batubara inilah yang dieksploitasi pada saat ini.



 4. Faktor-Faktor Dalam Pembentukan Batu Bara 
Faktor-Faktor dalam pembentukan batubara sangat berpengaruh terhadap bentuk maupun kualitas dari lapisan batubara. Beberapa faktor yang berpengaruh dalam pembentukan batubara adalah :
a. Material dasar, yakni flora atau tumbuhan yang tumbuh beberapa juta tahun yang lalu, yang kemudian terakumulasi pada suatu lingkungan dan zona fisiografi dengan iklim clan topografi tertentu. Jenis dari flora sendiri amat sangat berpengaruh terhadap tipe dari batubara yang terbentuk.
b. Proses dekomposisi, yakni proses transformasi biokimia dari material dasar pembentuk batubara menjadi batubara. Dalam proses ini, sisa tumbuhan yang terendapkan akan mengalami perubahan baik secara fisika maupun kimia.
c. Umur geologi, yakni skala waktu (dalam jutaan tahun) yang menyatakan berapa lama material dasar yang diendapkan mengalami transformasi. Untuk material yang diendapkan dalam skala waktu geologi yang panjang, maka proses dekomposisi yang terjadi adalah fase lanjut clan menghasilkan batubara dengan kandungan karbon yang tinggi.
d. Posisi geotektonik, yang dapat mempengaruhi proses pembentukan suatu lapisan batubara dari : Tekanan yang dihasilkan oleh proses geotektonik dan menekan lapisan batubara yang terbentuk.Struktur dari lapisan batubara tersebut, yakni bentuk cekungan stabil, lipatan, atau patahan. Intrusi magma, yang akan mempengaruhi dan/atau merubah grade dari lapisan batubara yang dihasilkan.

 5. Manfaat Batu Bara
a. Sumber Tenaga Pembangkit Listrik 
b. Industri Produksi Baja
c. Bahan Bakar Cair
d. Industri Produksi Semen
e. Industri Produksi Alumunium
f. Industri Produksi Kertas
g. Industri Bahan Kimia
h. Industri Farmasi
i. Produksi Naftalen
j. Produksi Metanol dll.




Daftar Pustaka :
http://auliaasyarifah.blogspot.co.id/2014/02/proses-pembentukan-batu-bara.html
http://www.astalog.com/6112/jelaskan-proses-terbentuknya-batubara.htm 
https://www.academia.edu/19607507/Proses_Pembentukan_Batubara
https://id.wikipedia.org/wiki/Batu_bara
http://logku.blogspot.co.id/2011/02/proses-pembentukan-batubara.html
http://manfaat.co.id/manfaat-batu-bara-dalam-kehidupan-sehari-hari

Surfaktan

Surfaktan

1. Pengertian Surfaktan
Apa itu surfaktan ? apa masih ada yang baru mendengar apa itu surfaktan ? disini akan sedikit mengupas tentang apa itu "Surfaktan". Surfaktan merupakan suatu zat yang mempunyai kemampuan untuk menurunkan tegangan permukaan (surface tension) suatu medium dan menurunkan tegangan antarmuka (interfacial tension) antar dua fase yang berbeda derajat polaritasnya. Molekul surfaktan memiliki bagian polar yang suka akan air (hidrofilik) dan bagian non polar yang suka akan minyak/lemak (hidrofobik).

Struktur surfaktan dapat digambarkan seperti berudu yang memiliki kepala dan ekor. Bagian kepala pada surfaktan bersifat hidrofilik atau polar dan kompatibel dengan air, sedangkan bagian ekor bersifat hidrofobik atau non-polar dan lebih tertarik ke minyak/lemak. Bagian kepala pada surfaktan ini dapat bersifat anionik, kationik, amfoterik atau nonionik.

2. Klasifikasi Surfaktan
    Surfaktan dapat digolongkan menjadi dua golongan besar, yaitu surfaktan yang larut dalam minyak dan surfaktan yang larut dalam air.
*Surfaktan yang larut dalam minyak  Ada tiga yang termasuk dalam golongan ini, yaitu senyawa polar berantai panjang, senyawa fluorokarbon, dan senyawa silikon. 
*Surfaktan yang larut dalam pelarut air
Golongan ini banyak digunakan antara lain sebagai zat pembasah, zat pembusa, zat pengemulsi, zat anti busa, detergen, zat flotasi, pencegah korosi, dan lain-lain. Ada empat yang termasuk dalam golongan ini, yaitu surfaktan anion yang bermuatan negatif, surfaktan yang bermuatan positif, surfaktan nonion yang tak terionisasi dalam larutan, dan surfaktan amfoter yang bermuatan negatif dan positif bergantung pada pH-nya.

 Penggunaan surfaktan ini bertujuan untuk meningkatkan kestabilan emulsi dengan cara menurunkan tegangan antarmuka, antara fasa minyak dan fasa air. Surfaktan dipergunakan baik berbentuk emulsi minyak dalam air maupun berbentuk emulsi air dalam minyak.
Klasifikasi surfaktan berdasarkan muatannya dibagi menjadi empat golongan yaitu:

a. Surfaktan Anionik
Surfaktan anionik bermuatan negatif pada bagian hidrofiliknya. Aplikasi utama dari surfaktan anionik yaitu untuk deterjensi, pembusaan dan emulsifier pada produk-produk perawatan diri (personal care product), detergen dan sabun. Kelemahan surfaktan anionik adalah sensitif terhadap adanya mineral dan perubahan PH. Contoh surfaktan anionik, yaitu linier alkilbenzen sulfonat, alkohol sulfat, alkohol eter sulfat, metil ester sulfonat (MES), fatty alkohol eter fosfat.

b. Surfaktan Kationik
Surfaktan kationik bermuatan positif pada bagian hidrofiliknya. Surfaktan kationik banyak digunakan sebagai bahan antikorosi, antistatik, flotation collector, pelunak kain, kondisioner, dan bakterisida. Kelemahan surfaktan jenis ini adalah tidak memiliki kemampuan deterjensi bila diformulasikan ke dalam larutan alkali. Contoh surfaktan kationik, yaitu fatty amina, fatty amidoamina, fatty diamina, fatty amina oksida, tertiari amina etoksilat, dimetil alkil amina dan dialkil metil amina.

c. Surfaktan Nonionik
Surfaktan nonionik tidak memiliki muatan, tetapi mengandung grup yang memiliki afinitas tinggi terhadap air yang disebabkan adanya interaksi kuat dipol-dipol yang timbul akibat ikatan hidrogen. Aplikasi surfaktan nonionik umumnya pada detergen untuk suhu rendah dan sebagai emulsifier. Keunggulan surfaktan ini adalah tidak terpengaruh oleh adanya air sadah dan perubahan pH. Contoh surfaktan nonionik adalah dietanolamida, alkohol etoksilat, sukrosa ester, fatty alkohol poliglikol eter, gliserol monostearat, sukrosa distearat, sorbitan monostearat, sorbitan monooleat, gliserol monooleat dan propilen glikol monostearat.

d. Surfaktan Amfoterik
Surfaktan amfoterik memiliki gugus positif dan negatif pada molekul yang sama sehingga rantai hidrofobik diikat oleh bagian hidrofilik yang mengandung gugus positif dan negatif. Surfaktan amfoterik sangat dipengaruhi oleh perubahan pH, dimana pada pH rendah berubah menjadi surfaktan kationik dan pada pH tinggi akan berubah menjadi surfaktan anionik. Surfaktan jenis ini umumnya diaplikasikan pada produk sampo dan kosmetik. Contohnya adalah fosfatidilkolin (PC), fosfatidiletanolamina (PE), lesitin, asam aminokarboksilat dan alkil betain.

3. Sifat-Sifat Surfaktan
a. Tegangan Permukaan dan Tegangan Antar Muka


Tegangan permukaan merupakan sifat khusus yang dimiliki molekul-molekul pada permukaan cairan dan tidak memiliki oleh sebagian besar molekul di dalam cairan tersebut. Tegangan permukaan dapat terjadi disebabkan adanya kecenderungan permukaan cairan untuk memperkecil luas permukaan secara spontan. Molekul yang berada di dalam cairan mengalami gaya tarik menarik (gaya van der waals) yang sama besarnya ke segala arah, sedangkan molekul pada permukaan cairan mengalami ketidakseimbangan gaya sehingga menghasilkan resultan yang mengarah ke dalam cairan.

b. Emulsifikasi
Jika campuran minyak dan air di kocok dnegan keras, maka akan terbenuk dispersi droplet air dalam minyak dan dispersi droplet minyak dalam air. Jika pengocokan dihentikan, maka fase air dan minyak akan terpisah kembali, akhirnya emulsi minyak-air akan terhenti. Penambahan surfaktan pada kedua campuran tersebut akan merubah sistem pencampuran, dimana salah saru cairan (minyak atau air) akan menjadi fase kontinyu dan yang lainnya terdispersi.
Emulsifikasi merupakan proses dispersi suatu cairan yang tidak bercampur dengan cairan lain dalam bentuk droplet-droplet cairan. Emulsifikasi dapat terjadi dengan cara menurunkan tegangan antar muka dua cairan yang saling tidak bercampur yang diikuti dengan meningkatnya energi bebas antar muka sebagai akibat dari meningkatnya luas permukaan.

c. Pembentukan Busa
Busa merupakan dispersi gas dalam cairan atau padatan. Pembentukan busa terjadi pada saat surfaktan yang berada pada antar muka air-udara, dengan gugus hidropobik memanjang pada bagian fase gas. Pada saat fase gas terbagi, maka busa akan terbentuk. Pada keadaan ini udara merupakan media nonpolar.
Dalam kaitannya dengan keterlibatan energi, busa mirip dengan emulsi. Mekanisme inkorporasi udara dalam sistem busa sama dengan pada sistem emulsi. Begitu juga dengan faktor yang mempengaruhi stabilitas busa sama dengan faktor yang mempengaruhi stabilitas emulsi. Volume fraksi gas dalam busa lebh besar dari volume fraksi gas pada emulsi.

d. Pelarutan
Pelarutan adalah penggabungan spontan suatu zat melalui interaksi dapat balik, dengan surfaktan dalam suatu larutan untuk membentuk larutan stabil. Pelarutan dalam media cairan merupakan hal sangat penting antara lain dalam proses pembersihan dan penghilangan pengotor lemak, serta polimerisasi emulsi. Pelarutan suatu surfaktan terhadap pengotor lemak dimulai dengan larutnya gugus hidrofobik pada pengotor lemak tersebut. Secara berangsur bercak pengotor lemak akan terlepas dari serat bahan (kain) dan terperangkap dalam kapsul misel-misel surfaktan yang menangkap sedikit demi seidikit butir pengotor lemak tersebut. Hal ini mengemulsikan pengotor lemak tersebut dalam suatu suspensi sehingga dapat dicuci dengan air.

4. Aplikasi Surfaktan
Jenis surfaktan yang biasanya digunakan pada produk-produk kosmetika dan pangan adalah lemak/asam lemak yang berasal dari minyak kelapa, dan saat ini seluruhnya diimpor dari negara lain. Surfaktan alkanolamida yang berasal dari minyak kelapa contohnya coconut dietanolamida. Coconut dietanolamida dimanfaatkan sebagai penstabil busa, bahan pendispersi, dan viscosity builder pada produk-produk toiletries dan pembersih seperti shampo, emulsifier, bubble bath, detergen bubuk dan cair, stabilizer skin conditioner dan sebagainya. Bahkan, aplikasi surfaktan sangat luas, tak terbatas dalam industri pembersih tapi juga pada industri cat, pangan, polimer, tekstil, dan lain-lain.


Demikian sedikit ilmu mengenai surfaktan, semoga bisa bermanfaat untuk semuanya. Terima Kasih

Daftar Pustaka :
http://hanyakimia.blogspot.co.id/2013/02/surfaktan-surface-active-agent.html
http://intanint.blogspot.co.id/2013/12/makalah-surfaktan.html
https://www.academia.edu/5266561/SIFAT-SIFAT_SURFAKTAN
http://djalalblack.blogspot.co.id/2014/04/surfaktan.html
https://id.wikipedia.org/wiki/Surfaktan